π-SEMI-PERFECT MODULES

Hamza Hakmi
Department of Mathematics, Faculty of Sciences, Damascus University, Syria

Received 16/07/2007
Accepted 28/10/2008

Abstract

The object of this paper is to study certain class of rings called π-semiperfect rings and generalizes this concept of modules.

We call a ring R is an π-semi-perfect, if for any element $a \in R$ there is a positive integer n such that $a^{n} R$ has a complement in R_{R}, or equivalently, $R / a^{n} R$ has a projective cover. In the first part, we have got that some of equivalent conditions to concept π-semi-perfect rings.

In the second part, we generalize this concept to projective modules, we have proved that a projective module P is an π-semi-perfect if and only if, endomorphism ring of P is an π-semi-prefect. The main result of this paper the following theorem: a projective module P is an π-semi-perfect if and only if $J(P)$ is small in P and for any $\varphi \in S=E n d_{R}(P)$ there is a positive integer n such that $\operatorname{Im} \bar{\varphi}^{n}$ is a direct summand of $P=P / J(P)$ and every direct decomposition of P can be lifted to a direct decomposition of P.

Key Words: Regular ring, π-regular ring, Radical of ring, Complement submodule, Projective module, Projective cover.

المووللات $\pi-$ iصف التامة
 حم ـزة حلكم مي
 قم الرباضيت .كلية العلو. .جلمعة هثق .سوربة
 2007/07/16 تاري - الإيداع
 فلى اللثد ـرف 2008/10/28

المالخص

 إلمقلايا.

 نصف تالمة. النتيجة الرئيسية في هنا النم هي المبرهنة الآنية: اللثوا اللازن والكلي كي يكهن المونط الإبقالي P هووولط P ولْنه ألآَكل الموقط $\overline{\text { الما }}$ الموطل

الكاملت المفتاحية: الحقة المنظمة، الحقة π-المنظمة، الـس بلس الحلق ـة، الم تمم الجمع، المودول الإنقطلي، الظاء الإبقطي لمودول.

Introduction

Throughout this paper, unless otherwise indicated, all modules over a ring R will be understood to be right R-modules. A ring R will always have a unit and every module will be unitary.

Following [1], let R be a ring, M an R-module and N a submodule of M. We say that N is small in M if whenever K is a submodule of M with $N+K=M$ then $K=M$. If M is an R-module, the radical of M, denoted $J(M)$, is defined to be the intersection of all maximal submodules of M. It may happen that M has no maximal submodules in which case $M=J(M)[1]$.

Thus, for a ring $R, J(R)$ is the Jacobson radical of R. It is easy to show that for any R-module $M, J(M)$ coincides with the sum of all small submodules of M [1].

If P is a projective R-module then P is a direct summand of a free R - module [2, Theorem 2.2] and hence $J(P)=P . J(R)$. Bass [3, Proposition 2.7] proved that if $P \neq o$ is a projective module then $P \neq P . J(R)$. Thus every projective module has a maximal submodule. A projective cover of R-module M is an epimorphism $P \rightarrow M$ with small kernel, where P is a projective R - module [4].

Let U and V be a submodules of R-module M such that $U+V=M$ and let f be the natural epimorphism $M \rightarrow M / U$. Then the restriction of f to V is also epimorphism $V \rightarrow M / U$. We call V a complement of U (in M) if the kernel of restriction is minimal i.e., if no proper submodule V^{\prime} of V satisfies $U+V^{\prime}=M$. Since the kernel of restriction is $U \cap V$, this equivalent to the condition that $U \cap V$ is small in V [4].

1- π-Semi-Perfect Rings.

An element a of a ring R is said to be regular (in the sense of Von Neumann) if $a=a b a$ for some $b \in R$. If each element of a ring R is regular, R is said to be regular ring [5]. An element a of a ring R is said to be π-regular if there exists a positive integer n such that $a^{n}=a^{n} b a^{n}$ for some $b \in R$. A ring R is called π-regular [6], if each element of a ring R is π-regular.

Now, we call a ring R is an π-semi-perfect if the factor ring $\bar{R}=R / J(R)$ is an π-regular and every idempotent of \bar{R} can be lifted to an idempotent of R. The following fact will be needed.

Lemma 1.1. Let $a \in R, a \in J(R)$. Then:
1-aR has a complement in R_{R}.
2- R/aR has a projective cover.
Proof. 1 - We will prove that R_{R} is a complement of aR in R_{R}. It is clear that $R=a R+R$. Let U be a right ideal of R such that $R=a R+U$, since $a \in J(R)$ then $a R \subseteq J(R)$ and $R=J(R)+U$. Since $J(R)$ is small in R it follows that $R=U$. This shows that R_{R} it is a complement of aR in R_{R}.

2 - Let $\pi: R_{R} \rightarrow R / a R$ be the natural R-epimorphism then Ker $\pi=a R \subseteq J(R)$.

Since $J(R)$ is small in R_{R} follows that Ker π is small in R_{R}. This shows that, R-epimorphism $\pi: R_{R} \rightarrow R / a R$ is a projective cover of R-module $R / a R$, hence R_{R} is a projective module.

Proposition 1.2. For any ring R the following conditions are equivalent:
$1-R$ is an π-semi-perfect ring.
2 - For any $a \in R$ there exists a positive integer n such that $a^{n} R$ has a complement in R_{R} which is a direct summand.

3 - For any $a \in R$ there exists a positive integer n such that $R / a^{n} R$ has a projective cover.

Proof. (1) \Rightarrow (2). Let $a \in R$. If $a \in J(R)$ then for any positive integer $n, a^{n} \in J(R)$ and by lemma 1.1, $a^{n} R$ has a complement in R_{R}. Let $a \notin J(R)$ since \bar{R} is an π - regular there exists a positive integer n such that the right ideal $\bar{a}^{n} R$ of \bar{R} is generated by an idempotent of \bar{R} which by assumption can be lifted to an idempotent e of R. If we put $e^{\prime}=1-e, e^{\prime}$ is also an idempotent and we have the decomposition $\bar{R}=\bar{e} \bar{R} \oplus \bar{e}^{\prime} \bar{R}$. Since $a^{n} \bar{R}=\bar{e} \bar{R}$ follows that $\bar{R}=a^{n} \bar{R} \oplus \overline{e^{\prime}} \bar{R}$. Since $e^{\prime} R$ is a direct summand right ideal, this implies that $e^{\prime} R$ is a complement of $a^{n} R$ by [4, lemma 1.5].
(2) \Rightarrow (3). Follows immediately from [4, proposition 1.4].
(3) \Rightarrow (1). Let $\bar{a} \in \bar{R}$. Then by assumption, there exists a positive integer n such that $R / a^{n} R$ has a projective cover, by [4, proposition 1.4] $a^{n} R$ has a complement K in R_{R} which is a direct
summand of R, by [4, lemma 1.5] $\bar{R}=\bar{a}^{n} \bar{R} \oplus \bar{K}$. Thus the right ideal $\bar{a}^{n} \bar{R}$ of \bar{R} is generated by an idempotent of \bar{R}, therefore $\bar{a}^{n} \bar{x} \bar{a}^{n}=\bar{a}^{n}$ for some \bar{x} of \bar{R}, because, since $\overline{1} \in \bar{R}$ then there are $\bar{x} \in \bar{R}, \bar{y} \in \bar{R}$ such that $\overline{1}=\bar{a}^{n} \bar{x}+\bar{y}$ and $\bar{a}^{n}=\bar{a}^{n} \bar{x} \bar{a}^{n}+\bar{y} \bar{a}^{n}$. We have $\bar{a}^{n}, \bar{a}^{n} \bar{x} \bar{a}^{n} \in \bar{a}^{n} \bar{R}$, therefore $\bar{a}^{n}-\bar{a}^{n} \bar{x} \bar{a}^{n}=\bar{y} \bar{a}^{n} \in \bar{a}^{n} \bar{R}$ and $\bar{y} \bar{a}^{n} \in \bar{K}$, thus $\bar{a}^{n}-\bar{a}^{n} \bar{x} \bar{a}^{n}=\bar{y} \bar{a}^{n} \in \bar{a}^{n} \bar{R} \cap \bar{K}=\{\bar{o}\}$. Thus, $\bar{a}^{n} \bar{x} \bar{a}^{n}=\bar{a}^{n}$.

Theorem 1.3. For any ring R the following conditions are equivalent:
$1-R$ is an π-semi-perfect ring.
2 - For any $a \in R$ there exists a positive integer n and $e^{2}=e \in a^{n} R$ such that $(1-e) a^{n} \in J(R)$.

3 - For any $a \in R$ there exists a positive integer n and $e^{2}=e \in R a^{n}$ such that $a^{n}(1-e) \in J(R)$.

4 - For any $a \in R$ there exists a positive integer n and $b \in R$ such that $b=b a^{n} b$ and $a^{n}-a^{n} b a^{n} \in J(R)$.

Proof. (1) \Rightarrow (2). Let $a \in R$ then by proposition 1.2, there exists a positive integer n such that $a^{n} R$ has a complement L in R_{R} which is a direct summand i.e., $R=a^{n} R+L$ and $a^{n} R \cap L$ is small in L, therefore $a^{n} R \cap L \subseteq J(L)$ Since L is a direct summand in R then $J(L)=L \cap J(R)$. Thus $a^{n} R \cap L \subseteq J(R)$

On the other hand, since $R=a^{n} R+L$ then by [4, Proposition 1.2] there exists a right ideal K of R such that $K \subseteq a^{n} R$ and $R=K \oplus L$. Since K is a direct summand of R then $K=e R$ for some idempotent e of R and $L=(1-e) R$. Thus $e \in K \subseteq a^{n} R$ and $R=a^{n} R+(1-e) R$. On the other hand,

$$
(1-e) a^{n} R=a^{n} R \cap(1-e) R=a^{n} R \cap L \subseteq J(R)
$$

therefore $(1-e) a^{n} \in J(R)$.
(2) \Rightarrow (4). Let $a \in R$ then there exists a positive integer n and idempotent $e \in R$ such that $e \in a^{n} R$ and $(1-e) a^{n} \in J(R)$. Therefore, $e=a^{n} r$ for some $r \in R$. Suppose $b=r a^{n} r$ then $b=b a^{n} b$ and

$$
a^{n}-a^{n} b a^{n}=a^{n}-a^{n} r a^{n} r a^{n}=a^{n}-e a^{n}=(1-e) a^{n} \in J(R)
$$

(4) \Rightarrow (1). Let $\bar{a} \in \bar{R}=R / J(R)$ then there exists a positive integer n and $b \in R$ such that $a^{n}-a^{n} b a^{n} \in J(R)$ and $b=b a^{n} b$. Therefore $\bar{a}^{n} b \bar{a}^{n}=\bar{a}^{n}, \quad \bar{R}=R / J(R)$ is an π-regular ring. Let \bar{a}_{o} is an idempotent in \bar{R} then $b_{o}=b_{o} a_{o}^{n} b_{o}$ for some $b_{o} \in R$. Suppose $e=a_{o}^{n} b_{o}$
then e is an idempotent in R and $\bar{e}=\bar{a}_{o}^{n} \bar{b}_{o} \in \bar{a}_{o} \bar{R}$. Thus $\bar{e} \bar{R} \subseteq \bar{a}_{o} \bar{R}$. On the other hand, since \bar{a}_{o} is an idempotent then $\bar{a}_{o}=\bar{a}_{o}^{m}$ for any $m \in N^{*}$ therefore we have $\bar{a}_{o}=\bar{a}_{o}^{n}=\bar{a}_{o}^{n} \bar{b}_{o} \bar{a}_{o}^{n}=\bar{e}^{o} \bar{a}_{o} \in \bar{e} R$ and $\bar{a}_{o} \bar{R} \subseteq \bar{e} \bar{R}$, therefore $\bar{e} \bar{R}=\bar{a}_{o} \bar{R}$. Thus, $\frac{\bar{a}_{o}}{o}=\frac{a_{0}}{\bar{e}} \bar{X}=\bar{e} \frac{o}{e} \bar{x}=\bar{e} \bar{a}_{o}$ for some $\bar{x} \in \bar{R}$ and $\bar{e}=\bar{a}_{o} \bar{y}=\bar{a}_{o} \bar{a}_{o} \bar{y}=\bar{a}_{o} \bar{e}$ for some $\bar{y} \in \bar{R}$. We put $f=e+e a_{o}(1-e)$ then $e f=f, f e=e, f^{2}=f$ and
$\bar{f}=\bar{e}+\bar{e} \bar{a}_{o}(\overline{1}-\bar{e})=\bar{e}+\bar{a}_{o}(\overline{1}-\bar{e})=\bar{e}+\bar{a}_{o}-\bar{a}_{o} \bar{e}=\bar{e}+\bar{a}_{o}-\bar{e}=\bar{a}_{o}$
Thus $\bar{R}=R / J(R)$ is an π-regular ring and every idempotent of \bar{R} can be lifted to an idempotent of R. By definition R is an π-semi-perfect ring.
(3) \Rightarrow (4). It is proved similarly to (2) \Rightarrow (4).
(4) \Rightarrow (3). Let $a \in R$ then there exists a positive integer n such that $b=b a^{n} b$ and $a^{n}-a^{n} b a^{n} \in J(R)$ for some $b \in R$. Let $e=b a^{n}$ then e is an idempotent of R and $e \in R a^{n}$. On the other hand, $a^{n}(1-e)=a^{n}-a^{n} e=a^{n}-a^{n} b a^{n} \in J(R)$. Thus our proof is completed.

Lemma 1.4. If R is an π-semi-perfect ring, so is the ring eRe for all non-zero idempotent e of R.

Proof. Let R be an π-semi-perfect ring and let e be a non-zero idempotent of R. Let a be an element of eRe, since $\bar{R}=R / J(R)$ is π-regular there exists a positive integer n and $r \in R$ such that $\bar{a}^{n} \bar{r} \bar{a}^{n}=\bar{a}^{n}$. Since $a \in e R e$ then $a=$ exe for some $x \in R$ and we have
$e a^{n}=e(\text { exe })^{n}=e \underbrace{(\text { exe })(\text { exe }) \cdots(e x e)}_{\text {nonce }}=\underbrace{(\text { exe })(\text { exe }) \cdots(\text { exe })}_{\text {nonce }}=(\text { exe })^{n}=a^{n}$
similarly, we have $a^{n} e=a^{n}$. Thus, $e a^{n}=a^{n} e=a^{n}$ and $\bar{a}^{n} \bar{e} \bar{r} \bar{e} \bar{a}^{n}=\bar{a}^{n}$.

Since $\bar{e} \bar{r} \bar{e} \in \bar{e} \bar{R} \bar{e}$ this shows that the subring $\bar{e} \bar{R} \bar{e}=e R e / e J(R) e$ of \bar{R} is an π - regular ring; here, as is well known, $e J(R) e=e R e \cap J(R)$ is the Jacobson radical of eRe. On the other hand, if $a \in e R e$ such that \bar{a} is an idempotent in \bar{R} then by [4, lemma 1.6] there exists an idempotent $f \in a R$ such that $\bar{f}=\bar{e}$. Since $a e=e a=a \quad$ follows that $f e=f$ where efef $=e f^{2}=e f \quad$ and $\bar{e} \bar{f}=\bar{e} \bar{a}=\bar{a}$ which shows that \bar{a} is lifted to the idempotent ef $\in e R e$.

A ring R is called I_{0}-ring [7], if any right (left) ideal of R is not contained in $J(R)$, contains a non-zero idempotent.

Lemma 1.5. Any π-regular ring R with $J(R)=O$ is an I_{0}-ring.

Proof. Let R be an π-regular ring with $J(R)=o$ and let A be a non-zero right ideal of R then there exists $a \in A, a \neq 0$. Since R is an π-regular ring there exists a positive integer n such that $a^{n}=a^{n} x a^{n}$ for some $o \neq x \in R$. Then $e=a^{n} x$ is an idempotent of R and $e \neq 0$, if $e=a^{n} x=0$ follows $a^{n}=a^{n} x a^{n}=0$, therefore $a \in J(R)=o$, contradict that $a \neq 0$. Thus, $e=a^{n} x \in a R \subseteq A$. This shows, that R is an I_{0} - ring.

2- π-Semi-Perfect Modules.

Definition. We call a module P, is an π-semi-perfect if P nonzero projective R-module and for any $f \in S=\operatorname{End}_{R}(P)$ there exists a positive integer n such that $P / \operatorname{Imf}{ }^{n}$ has a projective cover.

Proposition 2.1. For any projective R-module P the following conditions are equivalent:
$1-P$ is an π-semi-perfect module.
$2-S=\operatorname{End}_{R}(P)$ is an π-semi-perfect ring.
Proof. (1) \Rightarrow (2). Let $f \in S$, since P is an π-semi-perfect there exists a positive integer n such that $P / I^{\prime} f^{n}$ has a projective cover by [4, proposition 2.9] $S / f^{n} S$ has a projective cover by proposition 1.2, we have S which is an π-semi-perfect ring.
(2) \Rightarrow (1). Let $f \in S$, since S is an π-semi-perfect ring there exists a positive integer n such that $S / f^{n} S$ has a projective cover by [2, proposition 2.9] $P /$ Imf n has a projective cover therefore P is an π-semi-perfect.

Proposition 2.2. Every non-zero direct summand of an π-semiperfect module is an π-semi-perfect.

Proof. Let P be an π-semi-perfect module and let Q be a nonzero direct summand of P then Q is projective. Let e be the projection of P on to Q then it is easy to see that e is a non-zero idempotent of $S=\operatorname{End}_{R}(P), Q=\operatorname{Ime}$ and $E n d_{R}(Q) \cong e S e($ see 4, proposition 2.11). Since P is an π-semi-perfect module then by proposition 2.1, S is an π-semi-perfect ring and by lemma 1.4, the ring $\operatorname{End}_{R}(Q) \cong e S e$ is an π-semi-perfect. Thus, again by proposition 2.1, Q is an π-semi-perfect module.

Proposition 2.3. Let P be a projective R-module. If P is an π-semi-perfect then $J(P)$ is small in P.

Proof. Suppose P, is an π-semi-perfect, by proposition 2.1, $S=\operatorname{End}_{R}(P)$ is an π - semi-perfect ring. Since $S / J(S)$ is an π-regular ring and $J(S / J(S))=0$ then by lemma $1.5, S / J(S)$ is an I_{0}-ring. Since idempotent factor ring $S / J(S)$ can be lifted to an idempotent of S then S is an I_{0}-ring and by [7, lemma 3.3], $J(P)$ is small in P.

Consider now the factor module $\bar{P}=P / J(P)$ for projective right R - module P. For each submodule U of P we denote by \bar{U} the image of U under the natural epimorphism $P \rightarrow \bar{P}$ i.e., $\bar{U}=[U+J(P)] / J(P)$. Since $J(\bar{P})=o, \quad \bar{P}$ can be regarded as module over $\bar{R}=R / J(R)$ in the natural manner and \bar{R} - module \bar{P} is projective.

As is well known, there is a one-to-one correspondence between direct decomposition $P=U \oplus V$ and idempotent $e \in S=\operatorname{End}_{R}(P)$ such that e is the projection $P \rightarrow U$ (with respect to the decomposition) and conversely U, V are characterized by $U=$ Ime, $V=\operatorname{Im}(1-e)$. The same, of course, holds between direct decompositions of \bar{P} and idempotent of its endomorphism ring $S / H, H=\operatorname{Hom}_{R}(P, J(P))$ and in this case we have $\bar{U}=\operatorname{Im} \bar{e}$ and $\bar{V}=\operatorname{Im}(\overline{1}-\bar{e})$. This shows that to the decomposition $\bar{P}=\bar{U} \oplus \bar{V}$ there corresponds the idempotent \bar{e}. Thus we can conclude that a direct decomposition of \bar{P} can be lifted to a direct decomposition of P, if and only if, the corresponding idempotent of \bar{S} can be lifted to an idempotent of S.

Theorem 2.4. Let P be a projective R-module. Then P is an π-semi-perfect, if and only if, P satisfies the following three conditions:

1- $J(P)$ is small in P.
2- For any $\varphi \in S=\operatorname{End}_{R}(P)$ there exists a positive integer n such that $\operatorname{Im} \bar{\varphi}^{n}$ is a direct summand of \bar{P}.

3- Every direct decomposition of \bar{P} can be lifted to a direct decomposition of P.

Proof. Assume the condition (1). According to [4, proposition 2.4], this is equivalent to assumption that $J(S)=\operatorname{Hom}_{R}(P, J(P))$, and
$\bar{S}=S / J(S) \cong \operatorname{End}_{R}(\bar{P}=P / J(P))$. It follows then, from what we have observed above, that the condition (3) is equivalent to the condition that every idempotent of $S / J(S)$ can be lifted to an idempotent of S. We shall, moreover, show that condition (2) is equivalent to the condition that $\bar{S}=S / J(S)$ is an π-regular ring. Suppose that \bar{S} is an π-regular ring. Let $\varphi \in S$ then there exists a positive integer n and $f \in S$ such that $\bar{\varphi}^{n} \bar{f} \bar{\varphi}^{n}=\bar{\varphi}^{n}$ by [7, lemma 2.1], it follows that $\operatorname{Im} \bar{\varphi}^{n}$ is a direct summand of \bar{P}. Conversely, suppose that P satisfies (2). Let $f \in S$ then there exists a positive integer n such that $\operatorname{Im} \bar{f}^{n}$ is a direct summand of \bar{P}. But, since \bar{P} is projective as a right module over $\bar{R}=R / J(R), \operatorname{Im}_{n} \bar{f}^{n}$ is also projective and therefore the epimorphism $\bar{f}^{n}: \bar{P} \rightarrow \operatorname{Im} \bar{f}^{n}$ must split. This means $\operatorname{Ker} \bar{f}{ }^{n}$ is a direct summand of \bar{P}, by [7, lemma 2.1] there exists $\bar{g} \in \bar{S}$ such that $\bar{f}^{n} \bar{g} \bar{f}^{n}=\bar{f}^{n}$. Thus the endomorphism ring $\bar{S}=S / J(S)$ of \bar{P} is π - regular. We have thus seen that the conditions (1),(2) and (3) together imply that S is an π-semi-perfect ring and so P is an π-semi-perfect module by proposition 2.1.Conversely, suppose P is an π-semi-perfect module, then S is an π-semi-perfect ring, by proposition 2.1. Therefore we have both the conditions (2),(3), as shown above. Thus our proof is completed.

Examples.

1 -Every regular ring is π-regular.
$2-$ Let Q be an injective R-module and $S=\operatorname{End}_{R}(Q)$ then $S / J(S)$ is a regular ring and idempotents factor ring $S / J(S)$ can be lifted modulo $J(S)$, [8]. Thus endomorphism ring of injective module is F-semi-perfect.
$3-A$ ring R is called semi-simple if any right (left) ideal of R is a direct summand, [2, Theorem 4.2]. A ring R is called artinian if R satisfies minimum condition of right (left) ideals of R. If R is artinian ring then $R / J(R)$ is semi-simple. A ring R is π-regular, if and only if, every decreasing chain of left (right) ideals of the form $R a \supseteq R a^{2} \supseteq R a^{3} \supseteq \cdots\left(a R \supseteq a^{2} R \supseteq a^{3} R \supseteq \cdots\right)$ terminates.

It is clear that every artinian ring is π-regular, but not regular, hence $J(R) \neq o$.

4- A commutative π-regular ring with zero Jacobson radical is regular.

Let R be a commutative π-regular ring with $J(R)=0$, and $a \in R$. If $a=0$ then $a=a x a$ for any $x \in R$, this means that a is a regular element. Suppose that $a \neq 0$, since R is π-regular there exists a positive integer n such that $a^{n}=a^{n} b a^{n}$ for some $b \in R$. On the other hand, $a^{n} \neq 0$ because if $a^{n}=0$ then $a \in J(R)=0$ contradict that $a \neq 0$. Let $e=b a^{n}$ then $e \neq 0$ is an idempotent in R and $1-e \neq 1$ is an idempotent in R. Since $a^{n}=a^{n} b a^{n}=a^{n} . e$ implies that $a^{n}(1-e)=o$ and $[a(1-e)]^{n}=a^{n}(1-e)^{n}=a^{n}(1-e)=o$.

Thus, $a(1-e) \in J(R)=0$ this means that $a=a e$. On the other hand, since $e=b a^{n} \in R a$ then $e=y a$ for some $y \in R$, therefore $a=a . e=$ aya this shows that a is a regular element. Thus, R is a regular ring.

5 - Let R be a π-regular ring, then the Jacobson radical of R is nil ideal and factor ring $R / J(R)$ is π-regular. Since $J(R)$ is nil ideal then idempotents factor ring $R / J(R)$ can be lifted modulo $J(R)$, therefore any π-regular ring is π-semi-perfect, but not F - semi-perfect.
$6-R$. Ware, [9, Example 3.4] gives example of a regular ring R and a projective regular R-module $M=P \oplus Q$ such that $\operatorname{End}_{R}(P) \cong R \cong \operatorname{End}_{R}(Q)$ but $\operatorname{End}_{R}(M)$ is not regular.

Since $J(R)=o$ it follows that $J(M)=o$ and consequently that $J\left(\operatorname{End}_{R}(M)\right)=o$. This means that $\operatorname{End}_{R}(M)$ is not F - semi-perfect.

7 - Y. Hirano, [10, Corollary 1] shows that endomorphism ring of finitely generated module over commutative π-regular ring is π-regular. This means that if R is a commutative π-regular ring and M is a finitely generated R-module then $\operatorname{End}_{R}(M)$ is π-semiperfect, but not F-semi-perfect, hence $J\left(\operatorname{End}_{R}\left(M^{R}\right)\right) \neq O$.

REFERENCES

1. Kach, F. (1982). Modules and Rings, London. Math. Soc. Mono. V. 17.
2. Cartan, H. \& Eilenberg, S. (1956). Homological Algebra, Princeton Univ. Press, V. 19.
3. Bass, H. (1960). Finitistic dimension and a Homological generalization of semiprimary rings, Trans. Amer. Math. Soc. V.95, p.466-488.
4. Azumaya, G. (1991). F-Semi-Perfect Modules, J. Algebra, 136, p.73-85.
5. Goodearl, K. R. (1979). Von Neumann Regular Rings, London. Pitman.
6. Jacobson, N. (1964). Structure of rings, rev. ed., Amer. Math. Soc. Providence, R.I.
7. Hamza, H. (2000). I_{0} - Rings and I_{0}-Modules, Math.J.Okayama Univ.V.40. p.91-97.
8. Lambek, J. (1966). Lectures on rings and module, (Blaisdell).
9. Ware, R. (1971). Endomorphism rings of projective modules, Trans. Amer. Math. Soc. V.155, p.233-256.
10. Hirano, Y. (1979). On Fitting's lemma, Hiroshima. Math. J. V.9, p.623-626.
