π -SEMI-PERFECT MODULES

Hamza Hakmi

Department of Mathematics, Faculty of Sciences, Damascus University, Syria

Received 16/07/2007 Accepted 28/10/2008

ABSTRACT

The object of this paper is to study certain class of rings called π – semiperfect rings and generalizes this concept of modules.

We call a ring R is an π -semi-perfect, if for any element $a \in R$ there is a positive integer n such that $a^n R$ has a complement in R_R , or equivalently, $R/a^n R$ has a projective cover. In the first part, we have got that some of equivalent conditions to concept π -semi-perfect rings.

In the second part, we generalize this concept to projective modules, we have proved that a projective module P is an π -semi-perfect if and only if, endomorphism ring of P is an π -semi-prefect. The main result of this paper the following theorem: a projective module P is an π -semi-perfect if and only if J(P) is small in P and for any $\varphi \in S = End_{\mathbb{R}}(P)$ there is a positive integer n such that $Im\overline{\varphi}^n$ is a direct summand of P = P/J(P) and every direct decomposition of P can be lifted to a direct decomposition of P.

Key Words: Regular ring, π – regular ring, Radical of ring, Complement submodule, Projective module, Projective cover.

-π

.

Introduction

Throughout this paper, unless otherwise indicated, all modules over a ring R will be understood to be right R – modules. A ring R will always have a unit and every module will be unitary.

Following [1], let R be a ring, M an R-module and N a submodule of M. We say that N is small in M if whenever K is a submodule of M with N + K = M then K = M. If M is an R-module, the radical of M, denoted J(M), is defined to be the intersection of all maximal submodules of M. It may happen that M has no maximal submodules in which case M = J(M)[1].

Thus, for a ring R, J(R) is the Jacobson radical of R. It is easy to show that for any R – module M, J(M) coincides with the sum of all small submodules of M [1].

If P is a projective R – module then P is a direct summand of a free R – module [2, Theorem 2.2] and hence J(P) = P J(R). Bass [3, Proposition 2.7] proved that if $P \neq o$ is a projective module then $P \neq P J(R)$. Thus every projective module has a maximal submodule. A projective cover of R – module M is an epimorphism $P \rightarrow M$ with small kernel, where P is a projective R – module [4].

Let U and V be a submodules of R-module M such that U + V = M and let f be the natural epimorphism $M \to M/U$. Then the restriction of f to V is also epimorphism $V \to M/U$. We call V a complement of U (in M) if the kernel of restriction is minimal i.e., if no proper submodule V' of V satisfies U + V' = M. Since the kernel of restriction is $U \cap V$, this equivalent to the condition that $U \cap V$ is small in V [4].

1 - π -Semi-Perfect Rings.

An element a of a ring R is said to be regular (in the sense of Von Neumann) if a = aba for some $b \in R$. If each element of a ring R is regular, R is said to be regular ring [5]. An element a of a ring R is said to be π -regular if there exists a positive integer n such that $a^n = a^n ba^n$ for some $b \in R$. A ring R is called π -regular [6], if each element of a ring R is π -regular.

Now, we call a ring R is an π -semi-perfect if the factor ring $\overline{R} = R/J(R)$ is an π -regular and every idempotent of \overline{R} can be lifted to an idempotent of R. The following fact will be needed.

Lemma 1.1. Let $a \in R$, $a \in J(R)$. Then:

1 - aR has a complement in R_R .

2 - R/aR has a projective cover.

Proof. 1 – We will prove that R_R is a complement of aR in R_R . It is clear that R = aR + R. Let U be a right ideal of R such that R = aR + U, since $a \in J(R)$ then $aR \subseteq J(R)$ and R = J(R) + U. Since J(R) is small in R it follows that R = U. This shows that R_R it is a complement of aR in R_R .

2 – Let $\pi: R_R \to R/aR$ be the natural R – epimorphism then Ker $\pi = aR \subseteq J(R)$.

Since J(R) is small in R_R follows that Ker π is small in R_R . This shows that, R – epimorphism $\pi: R_R \to R/aR$ is a projective cover of R – module R/aR, hence R_R is a projective module.

Proposition 1.2. For any ring *R* the following conditions are equivalent:

1 - R is an π -semi-perfect ring.

2 – For any $a \in R$ there exists a positive integer n such that $a^n R$ has a complement in R_R which is a direct summand.

3 – For any $a \in R$ there exists a positive integer n such that $R/a^n R$ has a projective cover.

Proof. (1) \Rightarrow (2). Let $a \in R$. If $a \in J(R)$ then for any positive integer n, $a^n \in J(R)$ and by lemma 1.1, $a^n R$ has a complement in R_R . Let $a \notin J(R)$ since \overline{R} is an π - regular there exists a positive integer n such that the right ideal $\overline{a}^n \overline{R}$ of \overline{R} is generated by an idempotent of \overline{R} which by assumption can be lifted to an idempotent e of R. If we put $e'=1-e, \underline{e'}$ is also an idempotent and we have the decomposition $\overline{R} = \overline{eR} \oplus e'\overline{R}$. Since $a^n \overline{R} = \overline{eR}$ follows that $\overline{R} = a^n \overline{R} \oplus e'\overline{R}$. Since e'R is a direct summand right ideal, this implies that e'R is a complement of $a^n R$ by [4, lemma 1.5].

 $(2) \Rightarrow (3)$. Follows immediately from [4, proposition 1.4].

 $(3) \Longrightarrow (1)$. Let $\overline{a} \in \mathbb{R}$. Then by assumption, there exists a positive integer n such that $\mathbb{R}/a^n \mathbb{R}$ has a projective cover, by [4, proposition 1.4] $a^n \mathbb{R}$ has a complement K in \mathbb{R}_R which is a direct

summand of R, by [4, lemma 1.5] $\overline{R} = \overline{a}^n \overline{R} \oplus \overline{K}$. Thus the right ideal $\overline{a}^n \overline{R}$ of \overline{R} is generated by an idempotent of \overline{R} , therefore $\overline{a}^n \overline{x} \overline{a}^n = \overline{a}^n$ for some \overline{x} of \overline{R} , because, since $\overline{1} \in \overline{R}$ then there are $\overline{x} \in \overline{R}, \overline{y} \in \overline{R}$ such that $\overline{1} = \overline{a}^n \overline{x} + \overline{y}$ and $\overline{a}^n = \overline{a}^n \overline{x} \overline{a}^n + \overline{y} \overline{a}^n$. We have $\overline{a}^n, \overline{a}^n \overline{x} \overline{a}^n \in \overline{a}^n \overline{R}$, therefore $\overline{a}^n - \overline{a}^n \overline{x} \overline{a}^n = \overline{y} \overline{a}^n \in \overline{a}^n \overline{R}$ and $\overline{y} \overline{a}^n \in \overline{K}$, thus $\overline{a}^n - \overline{a}^n \overline{x} \overline{a}^n = \overline{y} \overline{a}^n \in \overline{A}^n \overline{R} \cap \overline{K} = \{\overline{o}\}$. Thus, $\overline{a}^n \overline{x} \overline{a}^n = \overline{a}^n$.

Theorem 1.3. For any ring R the following conditions are equivalent:

1 - R is an π – semi-perfect ring.

2 – For any $a \in R$ there exists a positive integer n and $e^2 = e \in a^n R$ such that $(1-e)a^n \in J(R)$.

3 - For any $a \in R$ there exists a positive integer n and $e^2 = e \in Ra^n$ such that $a^n(1-e) \in J(R)$.

4 - For any $a \in R$ there exists a positive integer n and $b \in R$ such that $b = ba^n b$ and $a^n - a^n ba^n \in J(R)$.

Proof. (1) \Rightarrow (2). Let $a \in R$ then by proposition 1.2, there exists a positive integer n such that $a^n R$ has a complement L in R_R which is a direct summand i.e., $R = a^n R + L$ and $a^n R \cap L$ is small in L, therefore $a^n R \cap L \subseteq J(L)$ Since L is a direct summand in R then $J(L) = L \cap J(R)$. Thus $a^n R \cap L \subseteq J(R)$

On the other hand, since $R = a^n R + L$ then by [4, Proposition 1.2] there exists a right ideal K of R such that $K \subseteq a^n R$ and $R = K \oplus L$. Since K is a direct summand of R then K = eR for some idempotent e of R and L = (1-e)R. Thus $e \in K \subseteq a^n R$ and $R = a^n R + (1-e)R$. On the other hand,

 $(1-e)a^n R = a^n R \cap (1-e)R = a^n R \cap L \subseteq J(R)$ therefore $(1-e)a^n \in J(R)$.

 $(2) \Longrightarrow (4)$. Let $a \in R$ then there exists a positive integer n and idempotent $e \in R$ such that $e \in a^n R$ and $(1-e)a^n \in J(R)$. Therefore, $e = a^n r$ for some $r \in R$. Suppose $b = ra^n r$ then $b = ba^n b$ and

 $a^{n} - a^{n}ba^{n} = a^{n} - a^{n}ra^{n}ra^{n} = a^{n} - ea^{n} = (1-e)a^{n} \in J(R)$

 $(4) \Longrightarrow (1)$. Let $\overline{a} \in \overline{R} = R/J(R)$ then there exists a positive integer $n \text{ and } b \in R$ such that $a^n - a^n b a^n \in J(R)$ and $b = b a^n b$. Therefore $\overline{a}^n \overline{b} \overline{a}^n = \overline{a}^n$, $\overline{R} = R/J(R)$ is an π -regular ring. Let \overline{a}_o is an idempotent in \overline{R} then $b_o = b_o a_o^n b_o$ for some $b_o \in R$. Suppose $e = a_o^n b_o$

then e is an idempotent in R and $\overline{e} = \overline{a}_o^n b_o \in \overline{a}_o R$. Thus $\overline{eR} \subseteq \overline{a}_o R$. On the other hand, since \overline{a}_o is an idempotent then $\overline{a}_o = \overline{a}_o^m$ for any $m \in N^*$ therefore we have $\overline{a}_o = \overline{a}_o^n = \overline{a}_o^n \overline{b}_o \overline{a}_o^n = \overline{e} \overline{a}_o \in \overline{eR}$ and $\overline{a}_o \overline{R} \subseteq \overline{eR}$, therefore $\overline{eR} = \overline{a}_o \overline{R}$. Thus, $\overline{a}_o = \overline{ex} = \overline{e} \overline{ex} = \overline{e} \overline{a}_o$ for some $\overline{x} \in R$ and $\overline{e} = \overline{a}_o \overline{y} = \overline{a}_o \overline{a}_o \overline{y} = \overline{a}_o \overline{e}$ for some $\overline{y} \in \overline{R}$. We put $f = e + ea_o(1-e)$ then ef = f, fe = e, $f^2 = f$ and

 $\overline{f} = \overline{e} + \overline{e} \,\overline{a}_o \,(\overline{1} - \overline{e}) = \overline{e} + \overline{a}_o \,(\overline{1} - \overline{e}) = \overline{e} + \overline{a}_o - \overline{a}_o \overline{e} = \overline{e} + \overline{a}_o - \overline{e} = \overline{a}_o$

Thus $\overline{R} = R/J(R)$ is an π -regular ring and every idempotent of \overline{R} can be lifted to an idempotent of R. By definition R is an π -semi-perfect ring.

 $(3) \Longrightarrow (4)$. It is proved similarly to $(2) \Longrightarrow (4)$.

 $(4) \Longrightarrow (3)$. Let $a \in R$ then there exists a positive integer n such that $b = ba^n b$ and $a^n - a^n ba^n \in J(R)$ for some $b \in R$. Let $e = ba^n$ then e is an idempotent of R and $e \in Ra^n$. On the other hand, $a^n(1-e) = a^n - a^n e = a^n - a^n ba^n \in J(R)$. Thus our proof is completed.

Lemma 1.4. If R is an π – semi-perfect ring, so is the ring eRe for all non-zero idempotent e of R.

Proof. Let R be an π -semi-perfect ring and let e be a non-zero idempotent of R. Let a be an element of eRe, since $\overline{R} = R/J(R)$ is π -regular there exists a positive integer n and $r \in R$ such that $\overline{a}^n \overline{r} \overline{a}^n = \overline{a}^n$. Since $a \in eRe$ then a = exe for some $x \in R$ and we have

$$ea^{n} = e(exe)^{n} = e(\underbrace{exe})(exe)\cdots(exe) = \underbrace{(exe})(exe)\cdots(exe) = (exe)^{n} = a^{n}$$

similarly, we have $a^n e = a^n$. Thus, $ea^n = a^n e = a^n$ and $\overline{a}^n \overline{e} \overline{r} \overline{e} \overline{a}^n = \overline{a}^n$.

Since $\overline{e} \ \overline{r} \ \overline{e} \in \overline{R} \ \overline{e}$ this shows that the subring $\overline{e} \ \overline{R} \ \overline{e} = eRe/eJ(R)e$ of \overline{R} is an π - regular ring; here, as is well known, $eJ(R)e = eRe \cap J(R)$ is the Jacobson radical of eRe. On the other hand, if $a \in eRe$ such that \overline{a} is an idempotent in \overline{R} then by [4, lemma 1.6] there exists an idempotent $f \in aR$ such that $\overline{f} = \overline{e}$. Since ae = ea = a follows that fe = f where $efef = ef^2 = ef$ and $\overline{ef} = \overline{e} \ \overline{a} = \overline{a}$ which shows that \overline{a} is lifted to the idempotent $ef \in eRe$.

A ring R is called I_0 – ring [7], if any right (left) ideal of R is not contained in J(R), contains a non-zero idempotent.

Lemma 1.5. Any π -regular ring R with J(R) = o is an I_0 -ring.

Proof. Let R be an π -regular ring with J(R) = o and let A be a non-zero right ideal of R then there exists $a \in A, a \neq o$. Since R is an π -regular ring there exists a positive integer n such that $a^n = a^n x a^n$ for some $o \neq x \in R$. Then $e = a^n x$ is an idempotent of R and $e \neq o$, if $e = a^n x = o$ follows $a^n = a^n x a^n = o$, therefore $a \in J(R) = o$, contradict that $a \neq o$. Thus, $e = a^n x \in aR \subseteq A$. This shows, that R is an I_0 -ring.

2 - π -Semi-Perfect Modules.

Definition. We call a module P, is an π -semi-perfect if P nonzero projective R - module and for any $f \in S = End_R(P)$ there exists a positive integer n such that P/Imf^n has a projective cover.

Proposition 2.1. For any projective *R* – module *P* the following conditions are equivalent:

1 - P is an π – semi-perfect module.

2 - S = End_R(P) is an π - semi-perfect ring.

Proof. (1) \Rightarrow (2). Let $f \in S$, since P is an π -semi-perfect there exists a positive integer n such that P/Imf^n has a projective cover by [4, proposition 2.9] S/f^nS has a projective cover by proposition 1.2, we have S which is an π -semi-perfect ring.

 $(2) \Longrightarrow (1)$. Let $f \in S$, since S is an π -semi-perfect ring there exists a positive integer n such that $S/f \, {}^nS$ has a projective cover by [2, proposition 2.9] $P/Imf \, {}^n$ has a projective cover therefore P is an π -semi-perfect.

Proposition 2.2. Every non-zero direct summand of an π – semiperfect module is an π – semi-perfect.

Proof. Let P be an π -semi-perfect module and let Q be a nonzero direct summand of P then Q is projective. Let e be the projection of P on to Q then it is easy to see that e is a non-zero idempotent of $S = End_R(P)$, Q = Ime and $End_R(Q) \cong eSe$ (see 4, proposition 2.11). Since P is an π -semi-perfect module then by proposition 2.1, S is an π -semi-perfect ring and by lemma 1.4, the ring $End_R(Q) \cong eSe$ is an π -semi-perfect. Thus, again by proposition 2.1, Q is an π -semi-perfect module.

Proposition 2.3. Let P be a projective R – module. If P is an π – semi-perfect then J(P) is small in P.

Proof. Suppose P, is an π -semi-perfect, by proposition 2.1, $S = End_R(P)$ is an π -semi-perfect ring. Since S/J(S) is an π -regular ring and J(S/J(S)) = o then by lemma 1.5, S/J(S) is an I_0 -ring. Since idempotent factor ring S/J(S) can be lifted to an idempotent of S then S is an I_0 -ring and by [7, lemma 3.3], J(P)is small in P.

Consider now the factor module $\overline{P} = P/J(P)$ for projective_right R – module P. For each submodule U of P we denote by U the image of U under the natural epimorphism $P \rightarrow \overline{P}$ i.e., $\overline{U} = [U + J(P)]/J(P)$. Since $J(\overline{P}) = o$, \overline{P} can be regarded as module over $\overline{R} = R/J(R)$ in the natural manner and \overline{R} – module \overline{P} is projective.

As is well known, there is a one-to-one correspondence between direct decomposition $P = U \oplus V$ and idempotent $e \in S = End_R(P)$ such that e is the projection $P \rightarrow U$ (with respect to the decomposition) and conversely U,V are characterized by U = Ime, V = Im(1-e). The same, of course, holds between direct decompositions of \overline{P} and idempotent of its endomorphism ring S/H, $H = Hom_R(P,J(P))$ and in this case we have $\overline{U} = Im \overline{e}$ and $\overline{V} = Im(1-\overline{e})$. This shows that to the decomposition $\overline{P} = \overline{U} \oplus \overline{V}$ there corresponds the idempotent \overline{e} . Thus we can conclude that a direct decomposition of \overline{P} can be lifted to a direct decomposition of P, if and only if, the corresponding idempotent of \overline{S} can be lifted to an idempotent of S.

Theorem 2.4. Let P be a projective R – module. Then P is an π – semi-perfect, if and only if, P satisfies the following three conditions:

1- J(P) is small in P.

2- For any $\varphi \in S = End_R(P)$ there exists a positive integer n such that $Im\overline{\varphi}^n$ is a direct summand of \overline{P} .

3- Every direct decomposition of \overline{P} can be lifted to a direct decomposition of P.

Proof. Assume the condition (1). According to [4, proposition 2.4], this is equivalent to assumption that $J(S) = Hom_R(P, J(P))$, and

 $\overline{S} = S/J(S) \cong End_{R}(\overline{P} = P/J(P))$. It follows then, from what we have observed above, that the condition (3) is equivalent to the condition that every idempotent of S/J(S) can be lifted to an idempotent of S. We shall, moreover, show that condition (2) is equivalent to the condition that $\overline{S} = S/J(S)$ is an π -regular ring. Suppose that S is an π -regular ring. Let $\varphi \in S$ then there exists a positive integer n and $f \in S$ such that $\overline{\varphi}^n \overline{f} \overline{\varphi}^n = \overline{\varphi}^n$ by [7, lemma 2.1], it follows that $Im \overline{\varphi}^n$ is a direct summand of \overline{P} . Conversely, suppose that P satisfies (2). Let $f \in S$ then there exists a positive integer n such that Imf^{-n} is a direct summand of \overline{P} . But, since \overline{P} is projective as a right module over $\overline{R} = R/J(R)$, $I_m f$ is also projective and therefore the epimorphism $f^{"}: \overline{P} \to Imf^{"}$ must split. This means $Kerf^{-n}$ is a direct summand of \overline{P} , by [7, lemma 2.1] there exists $\overline{g} \in \overline{S}$ such that $f^{-n} \overline{g} \overline{f}^{-n} = \overline{f}^{-n}$. Thus the endomorphism ring S = S/J(S) of \overline{P} is π - regular. We have thus seen that the conditions (1),(2) and (3) together imply that S is an π -semi-perfect ring and so P is an π -semi-perfect module by proposition 2.1.Conversely, suppose P is an π -semi-perfect module, then S is an π -semi-perfect ring, by proposition 2.1. Therefore we have both the conditions (2),(3), as shown above. Thus our proof is completed.

Examples.

1 – Every regular ring is π – regular.

2-Let Q be an injective R - module and $S = End_R(Q)$ then S/J(S) is a regular ring and idempotents factor ring S/J(S) can be lifted modulo J(S), [8]. Thus endomorphism ring of injective module is F - semi-perfect.

3– A ring R is called semi-simple if any right (left) ideal of R is a direct summand, [2, Theorem 4.2]. A ring R is called artinian if R satisfies minimum condition of right (left) ideals of R. If R is artinian ring then R/J(R) is semi-simple. A ring R is π -regular, if and only if, every decreasing chain of left (right) ideals of the form $Ra \supseteq Ra^2 \supseteq Ra^3 \supseteq \cdots (aR \supseteq a^2R \supseteq a^3R \supseteq \cdots)$ terminates.

It is clear that every artinian ring is π -regular, but not regular, hence $J(R) \neq o$.

4– A commutative π – regular ring with zero Jacobson radical is regular.

Let R be a commutative π -regular ring with J(R) = o, and $a \in R$. If a = o then a = axa for any $x \in R$, this means that a is a regular element. Suppose that $a \neq o$, since R is π -regular there exists a positive integer n such that $a^n = a^n ba^n$ for some $b \in R$. On the other hand, $a^n \neq o$ because if $a^n = o$ then $a \in J(R) = o$ contradict that $a \neq o$. Let $e = ba^n$ then $e \neq o$ is an idempotent in R and $1-e \neq 1$ is an idempotent in R. Since $a^n = a^n ba^n = a^n e$ implies that $a^n (1-e) = o$ and $[a(1-e)]^n = a^n (1-e)^n = a^n (1-e) = o$.

Thus, $a(1-e) \in J(R) = o$ this means that a = ae. On the other hand, since $e = ba^n \in Ra$ then e = ya for some $y \in R$, therefore a = ae = aya this shows that a is a regular element. Thus, R is a regular ring.

5 – Let R be a π – regular ring, then the Jacobson radical of R is nil ideal and factor ring R/J(R) is π – regular. Since J(R) is nil ideal then idempotents factor ring R/J(R) can be lifted modulo J(R), therefore any π – regular ring is π – semi-perfect, but not F – semi-perfect.

6 – R. Ware, [9, Example 3.4] gives example of a regular ring R and a projective regular R – module $M = P \oplus Q$ such that $End_R(P) \cong R \cong End_R(Q)$ but $End_R(M)$ is not regular.

Since J(R) = o it follows that J(M) = o and consequently that $J(End_R(M)) = o$. This means that $End_R(M)$ is not F – semi-perfect.

7 – Y. Hirano, [10, Corollary 1] shows that endomorphism ring of finitely generated module over commutative π -regular ring is π -regular. This means that if R is a commutative π -regular ring and M is a finitely generated R – module then End_R(M) is π -semiperfect, but not F – semi-perfect, hence J (End_R(M)) \neq 0.

REFERENCES

- 1. Kach, F. (1982). Modules and Rings, London. Math. Soc. Mono. V.17.
- 2. Cartan, H. & Eilenberg, S. (1956). Homological Algebra, Princeton Univ. Press, V. 19.
- 3. Bass, H. (1960). Finitistic dimension and a Homological generalization of semiprimary rings, Trans. Amer. Math. Soc. V.95, p.466-488.
- 4. Azumaya, G. (1991). F-Semi-Perfect Modules, J. Algebra, 136, p.73-85.
- 5. Goodearl, K. R. (1979). Von Neumann Regular Rings, London. Pitman.
- 6. Jacobson, N. (1964). Structure of rings, rev. ed., Amer. Math. Soc. Providence, R.I.
- 7. Hamza, H. (2000). I_0 Rings and I_0 Modules, Math.J.Okayama Univ.V.40. p.91-97.
- 8. Lambek, J. (1966). Lectures on rings and module, (Blaisdell).
- 9. Ware, R. (1971). Endomorphism rings of projective modules, Trans. Amer. Math. Soc. V.155, p.233-256.
- 10. Hirano, Y. (1979). On Fitting's lemma, Hiroshima. Math. J. V.9, p.623-626.